B.Sc 4 th Semester (Honours) Practical Examination, 2021 PHYSICS

(Analog Systems and Applications Lab)

Course ID: 42423

Course Code: SHPHS/403/C-10

Time: 1 Hour
Full Marks: 15

Answer any three questions

1. (a) Why is CE configuration widely used in amplifier circuit?
(b) Consider the voltage divider bias circuit of fig. given below. Assuming $\beta=260$, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{c}}=560 \Omega, \mathrm{R}_{\mathrm{E}}=680 \Omega, \mathrm{R}_{1}=22 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=12 \Omega$. Find $\mathrm{I}_{\mathrm{B},} \mathrm{V}_{\mathrm{CE}}$.

2. (a) Derive the expression of the high frequency gain of a single stage RC coupled amplifier
(b) Why do we neglect the junction capacitance in low frequency signal analysis?
3. (a) Draw a pin diagram of an OP-AMP.
(b) What do you mean by offset voltage of a practical OP-AMP circuit?
(c)Two input voltages v_{1} and v_{2} of the circuit shown in fig below are 200 mV and 100 mV respectively. Find out the value of output voltage v_{0}. $1+1+3$

4. (a) For the circuit of the figure given below show that the output voltage is

$$
v_{0}=-\frac{R_{2}}{R_{1}} v_{i}-C R_{2} \frac{d v_{i}}{d t}
$$

(b) Suppose a sinusoidal signal $v_{s}=10 \sin 2000 \pi t \mathrm{mV}$ is applied to the input of the OPAMP integrator with $R=1 \mathrm{M} \Omega$ and $\mathrm{C}=1 \mu \mathrm{~F}$. Find the output voltage.
5. (a) Draw a circuit using one or more OP-AMP whose output v_{0} is given by $v_{0}=4 v_{1}+$ $6 v_{2}$
(b) A moving coil meter is connected in the negative feedback path of an OP_AMO as shown in the figure given below. The meter shows full scale deflection when a current of $100 \mu \mathrm{~A}$ passes through it. Find the value of R such that the full scale deflection is obtained with $v_{i}=$ 10 V

