B.Sc 4 th Semester (Honours) Practical Examination, 2021 PHYSICS

(Analog Systems and Applications Lab)

Course ID: 42423 Course Code: SHPHS/403/C-10

Time: 1 Hour Full Marks: 15

Answer any three questions

 $5 \times 3 = 15$

- 1. (a) Why is CE configuration widely used in amplifier circuit?
 - (b) Consider the voltage divider bias circuit of fig. given below. Assuming β =260, V_{CC} =12 V, R_c =560 Ω , R_E =680 Ω , R_1 =22 $k\Omega$ and R_2 =12 Ω . Find I_B , V_{CE} .

2+3

- 2. (a) Derive the expression of the high frequency gain of a single stage RC coupled amplifier
 - (b) Why do we neglect the junction capacitance in low frequency signal analysis?

4+1

- 3. (a) Draw a pin diagram of an OP-AMP.
 - (b) What do you mean by offset voltage of a practical OP-AMP circuit?
- (c)Two input voltages v_1 and v_2 of the circuit shown in fig below are 200 mV and 100 mV respectively. Find out the value of output voltage v_0 . 1+1+3

4. (a) For the circuit of the figure given below show that the output voltage is

$$v_0 = -\frac{R_2}{R_1}v_i - CR_2\frac{dv_i}{dt}$$

- (b) Suppose a sinusoidal signal $v_s = 10sin2000\pi t$ mV is applied to the input of the OP-AMP integrator with R=1 M Ω and C=1 μ F. Find the output voltage. 3+2
- 5. (a) Draw a circuit using one or more OP-AMP whose output v_0 is given by $v_0 = 4v_1 + 6v_2$
- (b) A moving coil meter is connected in the negative feedback path of an OP_AMO as shown in the figure given below. The meter shows full scale deflection when a current of 100 μ A passes through it. Find the value of R such that the full scale deflection is obtained with $v_i = 10 \, V$

